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Quasi-2D Unsteady Flow Procedure for Real Fluids 

Roger L. Davis * 
University of California Davis, Davis, CA, 95616 

and 

Bryan T. Campbell † 
Aerojet, Sacramento, CA, 95813-6000  

The numerical solution techniques, including explicit, point-implicit, and fully implicit 
schemes, used in a new quasi two-dimensional procedure for the transient solution of real 
fluid flows in system lines and volumes are presented.  The procedure is coupled with a real-
fluid properties database so that both compressible and incompressible fluids may be 
considered using the same code.  The procedure has been implemented in Matlab/Simulink® 
as well as Fortran95 to allow for application on a wide variety of computer platforms.  The 
computational efficiency of the various numerical methods is discussed to aid in selection for 
specific applications.  Results for the transient flows of gaseous nitrogen and water in a 
simple pipe network are presented to demonstrate the capability of the current techniques 
and the unsteady flow physics that can occur in system lines. 

Nomenclature 
A = cross-sectional flow area 
Ap = perimeter 
ar = relative acceleration between inertial and absolute frames of reference (including gravity) 
CFL = Courant-Friedrichs-Lewi number 
c = speed of sound 
E = total energy = ρ (e + u2/2) 
e = fluid internal energy 
F = flux of mass, momentum, and energy 
H = static fluid enthalpy 
i = cell index 
k = temporal order of accuracy for Simulink® ode15s solution methodology 
K =  minor loss coefficient = 2∆p/(ρu2) 
m, n = index variables 
p = static pressure 
q&  = heat flux input 
S = source vector 
t = time 
U = fluid state vector 
u = absolute velocity 
ur = relative velocity 
V = fluid cell volume 
x = distance along solution domain 
z =  potential height above sea-level 
ρ = fluid density 
τw = shear force (friction) 
                                                           
* Professor, Mechanical and Aeronautical Engineering, AIAA Associate Fellow. 
† Engineering Specialist, Systems Engineering, P.O. Box 13222, Dept. 5271, AIAA Member. 
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I. Introduction 
HE simulation of unsteady flows of non-idealized fluids in system lines and volumes is of interest for a wide 
variety of applications and industries, including air-conditioning systems, water/steam/oil piping networks, 

refinery systems, gas-turbine secondary flow-path and cooling networks, and liquid rocket engine propellant lines.  
Several approaches for simulating the dynamic behavior of such fluid-transmission lines have been reported.  The 
lumped-analysis approach treats a flow passage as a series of fluid control volumes that conserve mass and energy 
linked by flow resistance elements that compute the flow between the volumes1.  While this approach does conserve 
momentum in a quasi-steady sense at the flow resistances, the unsteady momentum term in the governing equations 
is omitted.  Although so-called “continuity” waves can be captured using this approach, neglecting these terms leads 
to an inability to capture true “dynamic” waves required for simulating such phenomenon as water-hammer and 
pressure surge2.  Another approach utilizes the Method of Characteristics3, which can be applied to hyperbolic 
partial differential equations.  The governing equations for fluid flow are compatible with this method and it has 
been used for simulation of fluid transmission lines4.  While the unsteady momentum terms are retained using this 
method, other problems, particularly at the boundaries of components, make it difficult to apply to a modular 
system-level simulation tool.  Modal methods have also been used when solution in the frequency domain is 
possible5.  This technique represents the pressure and velocity distributions in the flow domain as a sum of an 
infinite series of mode shapes, similar to a Fourier series solution.  While this method does present an elegant and 
efficient method for simulating idealized flows (e.g. incompressible, inviscid, laminar, etc), the addition of turbulent 
flow, real-fluid properties, heat transfer and phase change complicate the application of the method and reduce its 
attractiveness. 

Since unsteady phenomena such as wave dynamics play an important role in the operation and testing of 
systems that contain fluid lines, a method that captures these transient effects is required.  The development of a 
quasi two-dimensional, unsteady, two-phase flow solver with heat transfer and real-fluid properties using standard 
finite-difference/control-volume solution methods is the subject of the present effort.  Such a solver is geared 
towards modeling the dynamic behavior of fluid-filled lines and passages (i.e. the solution domain is much larger in 
one spatial dimension than in the others) accounting for the effects of changing cross-sectional area.  In addition, the 
solver must be suitable for use as a module in larger system-level transient simulations of hydraulic and pneumatic 
systems, so the solution method must be computationally efficient.  The following sections describe the modeling 
approach, numerical methodologies and test cases that have been utilized during the development of this model.  
Results are then shown for transient pipe flow of both nitrogen and water as a demonstration of the numerical 
capability and fluid physics that can be captured with the current procedure. 

II. Approach 
The model developed here represents fluid lines and flow passages where the length of the domain is much 

larger than the domain hydraulic diameter so that a quasi two-dimensional (2D) flow assumption is valid.  For these 
types of components, flow separations and non-axial velocities are minimal, hence the quasi-2D assumption is valid.  
The solver is targeted to the commercial Simulink® dynamic simulation software package from the MathWorks for 
integration into a larger suite of modules developed for simulating various systems.  Simulink® was selected since it 
offers a wide range of capabilities, over a dozen robust differential equation solvers, extensive documentation and 
technical support, a modern graphically-based modeling paradigm, an existing user community across many 
disciplines, and commercially-funded code development and maintenance.  A Fortran95 code using more traditional 
solution methods is also being developed in parallel to provide verification test cases for the Simulink® module. 

The solver is being developed to account for varying flow area, friction, minor losses (e.g. bends and fittings), 
real-fluid and two-phase flow effects, gravity and acceleration, heat transfer, and the capability to produce unsteady 
and steady-state solutions.  Fluid properties are obtained from the REFPROP fluid property database6 available from 
the National Institute for Standards and Testing (NIST).  This database utilizes state-of-the-art Equation of State 
models to fully describe fluid properties over a wide range of thermodynamic conditions, including liquid, vapor, 
mixed phase and supercritical fluid regimes.  Properties that completely define the fluid thermodynamic state, as 
well as transport properties, are available as a function of any two thermodynamic parameters.  Validated fluid 
models for over 80 pure fluids and over 180 fluid mixtures are available in the database.  The database is accessed 
through a suite of Fortran77 subroutines that are linked to the flow solver and are used to obtain fluid equation of 
state model parameters. 

Fluid friction and heat transfer are modeled as source terms in the governing equations.  This approach allows 
the flow to be modeled as one-dimensional and facilitates computational efficiency.  Friction (i.e. viscous and minor 
losses) and heat transfer coefficients are obtained from suitable correlations between the flow variables and the 

T
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source terms.  The focus of this paper is to document the governing equations and numerical techniques used in the 
baseline solution of single-phase, transient flow problems in the absence of heat transfer and potential energy.   

III. Governing Equations 
The governing equations consist of the quasi two-dimensional continuity, Navier-Stokes and energy equations 

simplified to model viscous effects and general acceleration in a non-inertial frame using source terms.  
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where ρ is the density, u is the absolute velocity in the inertial frame, ur is the relative velocity in the non-inertial 
frame, ar is the gravitational and relative acceleration in the non-inertial frame, E is the total energy, p is the 
pressure, H is the stagnation enthalpy, V is the local cell volume, A is the local line cross-sectional area, dx is the cell 
line length, Ap is the perimeter, τw is the wall shear stress, and K is the local minor loss coefficient.  The wall shear 
stress can be written in terms of a friction factor, f, which is a function of the local Reynolds number and the wall 
surface roughness.   For the viscous flow examples presented below, the Churchill correlation7 was used to 
determine single-phase friction factors using the equation: 
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where Re is the local Reynolds number based on hydraulic diameter.  The minor loss coefficient, K, may be 
specified at various locations within the solution domain to model pressure loss at elbows, bends, valves, and sudden 
cross sectional area changes. 

Closure between the fluid pressure, density, and energy is performed with an equation of state for real fluids 
provided by the NIST REFPROP suite of thermodynamic routines.  This allows for the solution of compressible, 
incompressible, and two-phase flows using the same computational procedure. 

IV. Numerical Methods 
 Equations (1) and (2) may be solved with a variety of numerical schemes that are second-order accurate in 

space and time for “steady” or transient flow.  The solution schemes implemented here include implicit, point-
implicit, and explicit time-marching procedures.  Multiple-grid convergence acceleration may be used for steady-
flow problems as well as during the inner iteration of time-accurate, point-implicit solutions to dramatically reduce 
the required number of computational iterations.  Multiple numerical schemes have been developed using the 
current procedure to provide flexibility and robustness when solving different flow conditions.  All of these 
numerical schemes use a node-centered, second-order spatially accurate, central-differenced discretization.  The 
primary variables contained in the U vector of Eq. (2) are located at the nodes, which are typically spaced equally 
between the inlet and exit of each line in the overall domain. 

A. Implicit Simulink Method 
The Simulink® version of the flow solver is implemented using an S-Function programmed in ANSI C.  An 

S-Function is a specialized program for use in Simulink® models that contains specific subroutines required during 
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model execution.  The most important of these subroutines defines the time derivatives of the flow states (dU/dt) at 
each computational node.  So for N nodes, this subroutine must define 3N derivatives, one for each element of the 
state vector U at each node.  The state fluxes at each cell center are computed as discussed below (section IV B), and 
the fluxes are distributed to the neighboring nodes.  Once the time derivatives of the system states are computed, 
standard Simulink® solvers are used to integrate the derivatives and compute the time history of the model states.  
Equations (1) and (2) may be solved iteratively in a sequential manner.  One Simulink solver utilized here, ode15s, 
treats the discretized form of Eqs. (1) and (2) as a sequential set of ordinary differential equations and solves them 
iteratively with a Newton iteration according to the Numerical Differentiation Formula8: 
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where k is the temporal order of accuracy of the scheme.  In the current investigation, both the temporal and spatial 
accuracy are second order.  Another Simulink solver used here, ode23s, is a linearly implicit formula for stiff 
systems based on a modified Rosenbrock method that is especially effective with crude tolerances8.  Both of the 
Simulink solvers covered here are discussed in detail in Reference 8. 

B. Explicit Method 
Explicit time-marching of Eqs. (1) and (2) may also be performed using a Lax-Wendroff control-volume 

scheme, as described by Ni9.  In this procedure, time-marching the primary variables, U, corresponds to an update in 
time at each node according to a second order temporally accurate Taylor series formula: 
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The Ni scheme is a finite volume integration method.  The scheme is applied in a three-step process. First, the 
change, ∆t ∂U/∂t, (the second term on the right-hand-side of Eq. (5)) at the center of each computational cell is 
approximated as: 
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The time-step size is determined by the Courant-Friedrichs-Lewi condition i.e. 
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where CFL is the stability number with a typical value of 0.7 and c is the local speed of sound. 
 The correction, 0.5 ∆t2 ∂2U/∂t2, (the third term on the right-hand-side of Eq. (5)) to the points i and i+1 are 
determined from time derivatives of Eq. (6).  These corrections are then added or subtracted to the cell center 
change given by Eq. (6) to obtain the time-rate contributions to the adjacent nodes from each cell: 
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The primary variables at the nodes are then updated by  
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 The CFL stability number that sets the time-step size is set to 0.7 due to the explicit nature of this scheme.  For 
steady flows or the inner iteration of the point-implicit technique described below, a multiple-grid acceleration 
procedure described by Ni9 is used to greatly reduce the number of time-steps to reach convergence.  This allows the 
computational efficiency of this scheme to be competitive with the implicit procedure described above. 

C. Point Implicit Method 
A point-implicit procedure can be made up from either the implicit or explicit schemes described above.  For this 

procedure, the time-rate changes in Eqs. (4) or (5) are assumed to be in pseudo-time.  A true time derivative of the 
primary variables is added to the right-hand side of Eq. (1).  This true time derivative is derived from stored 
solutions of the primary variables at k+1 previous time-steps, where again, k is the temporal order of accuracy 
desired.  An inner-iteration is then used to drive the right-hand-side to zero.  The advantage of this approach is that 
steady-flow acceleration techniques may be used during the inner iteration such as a multiple-grid scheme.  Also, 
this technique provides flexibility in performing multiple lines of a network in parallel.  This procedure is known as 
the dual-time-step technique10 and has many similarities to the Newton iteration used in the implicit procedure. 

D. Boundary Conditions 
Boundary conditions are applied each time-step at the inlet and exit of each line in the network.  These boundary 

conditions are specified depending on the network connectivity and consist of either a global inlet, global exit, or 
junction boundary condition.  At the global inlet(s) to the network, the stagnation enthalpy and entropy are held 
constant at levels determined from specified stagnation pressure and stagnation temperature and the predicted 
velocity.  The resulting density and internal energy are determined from REFPROP thus allowing for the 
determination of the total energy, E.  At the global exit(s) to the network, the specified exit static pressure is held 
constant.  The internal energy and predicted velocity along with this specified pressure are used with REFPROP to 
determine the density and total energy.  The prescribed inlet stagnation pressure, stagnation temperature, and exit 
static pressure may be specified as functions of time.  At line junctions, the contributions of the time-rate changes in 
the primary variables contained in U of Eq. (1) are summed to give the total time-rate change at the junction node.  
For each junction of a given line, the neighboring line numbers and boundaries (i.e. inlet or exit) are stored to make 
the implementation of this boundary condition straightforward. 

V. Results 
Transient pipe flow simulations of gaseous nitrogen and liquid water have been performed to verify the accuracy 

and demonstrate the capability of the present procedure.  A co-planar (z = 0) two-pipe system, shown in Fig. 1, 
consisting of two 0.127 m (5 in) pipes with 0.0254 m (1 in) diameters was used for these simulations.  The surface 
roughness of the pipe, necessary for viscous flow simulations, was 2.54 x 10-6 m (0.0001 in).  The inlet stagnation 
pressure as well as the initial exit static pressure was held at 345 kPa (50 psia).  Thus, the initial velocity of the flow 
in the pipe was zero.  The inlet stagnation temperature was held at 300 K (540°R).  At time 0.001 seconds, the exit 
pressure was reduced to 331 kPa (48 psia).  This sudden reduction in pressure initiates a series of expansion and 
compression waves through the pipe system and an increase in the velocity of the flow.  For inviscid-flow cases, the 
pressure decays in the pipe to a uniform value and the velocity grows asymptotically to a uniform value.  For 
viscous-flow cases, the pressure in the pipe decays but to a non-uniform distribution with the inlet pressure higher 
than the exit due to friction and minor losses.  The velocity of the pipe flow, however, will once again grow 
asymptotically in time until it reaches a near-uniform value.  All simulations were run in time until both the pressure 
and velocity distributions through the pipe remained time-independent.  A total of 33 grid points with uniform 
spacing were used along each pipe in order to discretize the governing equations. 
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Figure 1. Two-pipe system. 

A. Transient, Viscous Nitrogen Pipe System Flow 
The two-pipe flow simulation with nitrogen is meant to test the current procedure’s capabilities for modeling 

compressible flow.  The explicit and point-implicit numerical procedures were run in order to verify the solution 
accuracy and to demonstrate features of these solution techniques.  Figure 2 shows the predicted pressure and 
velocity as a function of time using the explicit numerical technique for viscous flow at five locations along each 
pipe.  In this scheme, the time step size is determined by the minimum time step of all the cells in the overall 
domain.  The sinusoidal variation of pressure with time is evidence of the expansion and compression waves 
propagating through the pipe.  The time-variation of the velocity corresponds to these waves.  The pressure decays 
in time until it reaches equilibrium with an overall pressure drop across the system of 5.47 kPa (0.793 psia).  The 
maximum pressure drop occurs at the exit of line-1 and the inlet of line-2 where minor losses occur due to the flow 
turning in the 90 degree elbow.  The velocity increases until it reaches a value of 65.59 m/s (215.2 ft/s).  The friction 
factor predicted by Eq. (3) was 0.00188.  The Reynolds number of the flow based on line diameter was predicted to 
be 3.66x105.  Similar results were obtained using the time-accurate implicit Simulink® solvers ode15s and ode23s. 
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Figure 2. Nitrogen transient viscous pipe flow using explicit numerical technique. 
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Figure 2. (cont) Nitrogen transient viscous pipe flow using explicit numerical technique. 
 
 The solution upon reaching steady-state may be compared with an analytical solution to the energy equation.  
For incompressible flow, the control-volume energy equation may be written as: 
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where hfriction is the viscous friction head, g is the acceleration due to gravity, and z is the potential height above a 
reference location.  At the inlet to the configuration shown in Fig. 1, the pressure is equal to the stagnation pressure 
and the velocity is zero.  At the exit to line-2, the pressure is equal to the exit static pressure.  The friction head may 
be written in terms of the friction and minor loss coefficients as: 
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where L is the pipe length, and Dh is the hydraulic diameter.  For the problem described in Fig. 1 using nitrogen as 
the fluid, the analytical solution of Eq. (13) results in a steady-state velocity of 65.67 m/s (215.4 ft/s) and a pressure 
drop of 5.45 kPa (0.791 psia).  The predicted velocity corresponds to a low enough Mach number (0.15) that the 
nitrogen gas can be assumed essentially incompressible.  The agreement between the numerical prediction and the 
steady-state analytical solution is excellent with the minor differences being due to the low level of compressibility 
in the gas.  The numerical solution shown in Fig. 2 took 5,850 iterations to reach steady-state over 0.0397 seconds in 
real time. 

As a check of the transient response of the computational solution, the period of pressure oscillations can be 
compared to the period expected for frictionless flow (e.g. organ pipe modes).  The pressure waves inside the pipe 
will travel at slightly less than the speed of sound, where the difference is a result of friction losses.  Thus, the 
pressure oscillations should occur close to the natural frequency of the pipe (c/2L), or 696Hz for this case.  The 
observed oscillation period is about 0.00157 seconds, which is slightly higher than the period corresponding to the 
natural frequency of the pipe (0.00144 seconds).  Thus, the method produces transient results in keeping with 
physical expectations. 

Figure 3 shows the predicted results for the same two-pipe system with nitrogen using the point-implicit 
numerical procedure.  In this procedure, the time-step size can be prescribed by the user to be any value that results 
in a desired solution time and resolution of temporal features in the flow.  For the present case, the time-step size 
was set at 0.01 seconds, which was approximately 1,700 times larger than that required for in the explicit procedure.  
The capability to use a large time-step size in the point-implicit procedure allows for very fast solution time.  
However, as shown by comparing Figs. 2 and 3, resolution of the high-frequency waves and their effect on the 
pressure and velocity is lost as a result of the increased time-step size.  The availability of different solution 
algorithms to the overall procedure allows for rapid solutions when fine temporal resolution is not needed as well as 
detailed solutions when high temporal resolution of waves is required. 
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Figure 3. Nitrogen transient viscous pipe flow using point-implicit numerical technique. 

B. Transient, Viscous Water Pipe System Flow 
A similar set of simulations were performed using the present procedure with water to demonstrate the capability 

to predict transient flows of incompressible fluids.  The main critical difference with incompressible fluids is that the 
speed of sound and wave speeds are much larger than for compressible fluids.  This makes the use of explicit 
numerical techniques quite time-consuming.   Resolution of the detailed unsteady sinusoidal transients shown above 
with the explicit numerical technique is possible, but requires large compute times.  The effects of the high-
frequency waves are not always of interest, so that numerical techniques that can take large time-steps and reduce 
solution time are often attractive. 

Figure 4 shows the transient, point-implicit, viscous solution of water through the previously described 
configuration (Fig. 1).  Note that the time to reach steady-state for water is much longer than that required for 
nitrogen due to the incompressibility of the fluid.  The size of the time step used in the point-implicit solution was 
0.1 seconds.  The time step size required in the corresponding explicit solution procedure was approximately 2x10-6 
seconds or 50,000 times smaller than that used in the point-implicit solution.  As a result, approximately 1.5 trillion 
time steps would be required to solve the 3000 seconds of time required to reach steady-state.  Even with a time step 
size of 0.1 seconds, the point-implicit scheme still resolves much of the pressure oscillations in the flow.  The 
predicted pressure drop over the two-pipe system converges to a steady-state value of 5.59 kPa (0.811 psia) which 
again is in excellent agreement with the analytical energy equation analysis that gave 5.61 kPa (0.814 psia).  The 
velocity converges to a uniform steady-state value of 4.05 m/s (13.29 ft/s).  The predicted friction factor was 
0.00228 and the Reynolds number based on diameter was 1.06x105.  The analytical energy equation analysis 
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resulted in a velocity of 4.05 m/s (13.28 ft/s) demonstrating that the numerical techniques are verified against 
analytical solutions. 
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Figure 4. Water transient viscous pipe flow using point-implicit numerical technique. 
 
 Figure 5 shows the predicted transient pressure over the time period between 0.001 and 0.003 seconds for both 
lines resulting from the Simulink® implicit numerical technique.   Also shown in this figure is the predicted transient 
pressure over the same time period predicted with the point-implicit numerical scheme.  The time-step size 
determined automatically in the Simulink® implicit technique (i.e. 2x10-5 seconds) was approximately 10 times 
greater than that which would have been used in the explicit technique.  The same time-step size of 2x10-5 seconds  
was used in the point-implicit scheme.  As with the point-implicit procedure, the fully implicit technique has the 
advantage of being able to use very large time step sizes.  This capability affords fast turnaround of solutions with 
the possibility of some loss in temporal resolution.  However, both of the implicit and point-implicit schemes also 
allow for small time step sizes similar in magnitude to those used by the explicit numerical technique in order to 
resolve the transient details and frequencies in the flows if desired.  This ability to use a wide range of time step 
sizes allows for maximum flexibility in obtaining the desired solutions. 
 Comparison of the unsteady pressure between the implicit and point-implicit numerical techniques in Fig. 5 
shows that the predicted frequency of the unsteady waves is essentially the same.  The observed pressure oscillation 
period of about 0.000341 seconds compares well with the expected period of 0.000338 seconds (2,957Hz) based on 
frictionless flow analysis.  The predicted amplitudes of the unsteady waves of the Simulink® implicit procedure are 
greater than those predicted by the point-implicit scheme.  In addition, the Simulink® implicit procedure predicts 
more harmonics in the unsteady solution than predicted by the point-implicit scheme.  These differences are likely 
due to the dispersion error resulting from the adaptive time-step used in the Simulink® implicit procedure.   
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Figure 5. Transient pressure comparison of numerical techniques for water transient viscous pipe flow. 

VI. Conclusion 
A new baseline procedure has been developed for the numerical solution of transient quasi two-dimensional flow 

in system lines, networks, and volumes.  This new procedure has been implemented in both Matlab/Simulink® and 
Fortran95.  A variety of numerical solution algorithms are available to allow for various needs depending on the 
desired solution time and frequency resolution.  Currently, explicit, point-implicit, and implicit numerical techniques 
have been implemented and verified.  The implicit and point-implict techniques are useful for obtaining rapid turn-
around of solutions at the expense of some loss in temporal resolution.  The explicit technique is useful for 
predicting the high-frequency content of transient flow fields.  Transient, viscous solutions using these numerical 
techniques have been presented and verified for a two-pipe system with a closed-form analytical solution to the 
energy equation. 

Agreement between the numerical and analytical solutions based on energy balance analysis and pressure 
oscillation frequency are excellent demonstrating that the present procedure for the transient solution of 
compressible or incompressible fluids in the absence of heat transfer is valid.  Unsteady pressure and velocity 
through the two lines in the system are shown as a demonstration of the transient physics predicted by the procedure. 

Work on the quasi two-dimensional flow solver codes is continuing.  Future efforts will focus on implementing 
two-phase flow and wall heat transfer capabilities, modularization for use in higher-level system simulations, and an 
approach for parallel solution on multi-processor configurations. 
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